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Heat transfer accompanying liquid motion in a medium of low porosity is investigated. 

In connection with the exploitation of geothermal energy, it is very important to in- 
vestigate the heat transfer accompanying the motion of water through underground permeable 
beds -- collectors. 

The physical velocity w of liquid motion in an artificial collector is determined by the 
permeability ~ (darcy) characterizing the active porosity of the bed. It is evident from 
Fig. i, which presents the known data on the permeability of artificial collectors, that the 
collector permeability (and hence the porosity) may vary by several orders of magnitude. 

Consider the heat transfer accompanying forced convection in a weakly permeable collec- 
assuming that the bed is filled by hot liquid (temperature t I) and the bed skeleton is tor, 

formed by spherical structures. In the one-dimensional case, for-an average liquid tempera- 
ture t Z over the cross section, the energy equation is 

aQ 
GI -OtlO'~ + GI w~ Ox . . . . . .  ~q~ (1) 

where qv is the heat flux from the skeleton passing through specific surface ~; w x is the 
true velocity of liquid motion in the collector: w x = Q/mS. 

In what follows, the position developed in [i, 2] is adopted. The heat flux from the 
bed skeleton qv(t~) is found by solving the heat-conduction equation for a single sphere: 

a ( R T ) =  02 OF-----o- - ~  (RT), 0 < R <  1 , (2) 

w i t h  b o u n d a r y  c o n d i t i o n s  o f  t h e  t h i r d  k i n d  a t  t h e  s u r f a c e :  

oRaT R=1 = Bi ( T -  1)[R=l. 

I n  Eq. (3) t h e  t e m p e r a t u r e  o f  t h e  l i q u i d  p h a s e  i s  t a k e n  e q u a l  t o  1: 
t h e  t h e r m a l  r e s i s t a n c e  f rom t h e  d i r e c t i o n  o f  t h e  l i q u i d  can  be  t a k e n  i n t o  a c c o u n t .  The s o l u -  
t i o n  o f  Eq. (2) w i t h  t h e  b o u n d a r y  c o n d i t i o n s  ( 3 ) ,  z e r o  i n i t i a l  c o n d i t i o n s ,  and symmet ry  c o n -  
d i t i o n  T~(R = 0) = 0 i s  known [ 3 ] .  I f  t h e  l i q u i d - p h a s e  t e m p e r a t u r e  v a r i e s  a r b i t r a r i l y ,  a c -  
c o r d i n g  t o  a law |  t h e  d e s i r e d  t e m p e r a t u r e  i s  e q u a l  t o  t h e  p r o d u c t  o f  r e p r e s e n t a t i o n s  o f  
t h e  t e m p e r a t u r e  (Duhamel t h e o r e m ) .  The  r e s u l t i n g  t e m p e r a t u r e  i s  w r i t t e n  i n  L a p l a c e - - C a r s o n  
t r a n s  fo rms  : : !~. . . . .  ~ . . . . . .  . . . .  ::. :~: : 

Bi sh (]/-FR) ~3 (s). (4) 
T (Fo)---+ t (s) ---- R I(Bi - -  I) sh V - s +  V-sch V s ]  

The Laplace--Carson representation of the heat flux is 

in 
t I) aT ( l / s - -  iN ] / s )  @ (s) 

= _ x , ( 5 )  
~b(/~ n- 

4~ (S) = ~'b (t0 -- " - ~  R=l 
r o r o ( 1 - -  B) th K s  + B V-s 

(3) 

In this formulation, 
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Fig. i. Permeability ~ (darcy) 
of artificial collectors, x, m. 

!i 

u Fig. 2. Integration loop. 

where B ~ I/Bi. Let 

g ( F o ) + ~  ~ (s) --- 
V s - -  th ]/-s 

(1 -- B)th V s §  B [ / s "  

After conversion to a dimensionless representation, Eq. (I) may be rewritten in integro- 
differential form 

Fo 

O0 O0 = 6 0 [ 
OF---o + OX OFo o g ( u ) O ( F ~  (6) 

0 

Applying a two-dimensional Laplace--Carson transform to Eq. (6) with initial and inlet con- 
ditions 

@(X, F o =  0)=0;  @(X--O, F o ) =  1, (7) 

we obtain an equation in the representations 

s~ + p O - - p  -- g (s )~ .  (8) 

Finding ~(s) from Eq. (8), the general formula of operational calculus [3] gives 

1 exp [-- sX 1 exp sFo- -  6 X  (9) 
@ (Fo) -- 2~i ( 1 - -  B) th ] f s  -t- B l '-s s 

The integration loop is chosen in accordance with Fig. 2, avoiding the zero point, and 
then the Jordan lemma gives the final form of the solution: 

0 (Fu, Bi) = -~1 + 2n exp [-- OXq) 1 (u)] sin - - ~  -~- GXq~ 2 (u) ---u ' (10) 

0 

where 

~Pl (u) = ( u t h - -  2 ( 1 - -  B)  nz -j- uZB)/~3; ~ = 2 ( B - -  B~) thu -k 2 (1 - -  B)2 n2 -k uZB; 

q~2(u) = u n3/~; ,Fu = F o - - X ;  nl = (shu + s inu ) / ( chu  + cosu); 

nz = (ch u - -  cos u)/(ch u + cos u); na = (sin u - -  sh u)/(ch u + cos u). 
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Fig. 3. Dependence of heat-transfer coef- 
ficient Nu on Re (Sc = 2500): i) glass 
spheres (m = 0.4); 2) particles of irregu- 
lar form (m = 0.27); 3) rectangular paral- 
lelepipeds (m = 0.05). 

Calculation by Eq. (i0) is possible when the value of Bi corresponding to the type of 
filtering medium and the active porosity is known. 

To this end, an experimental investigation of the heat-transfer coefficient for various 
models of a porous medium was carried out by the electrochemical-analogy method [4] at the 
Institute of Catalysis of the Siberian Branch of the Academy of Sciences of the USSR (~. 
Brandes assisted in the work). 

The working part of the experimental apparatus was a sectional cylindrical tube of or- 
ganic glass (diameter 200 mm), which was filled with material in the experiments. The per- 
meability of the medium was modeled by glass particles of irregular form (deq = 11.5 mm; ac- 
tive porosity m = 0.3) and rectangular parallelepipeds (3.5 x 3.5 x 150 mm; m 5.10-2). 
Electrochemical sensors in the form of the filling elements recorded the limiting value of the 
diffusion current. 

The flow Conditions were varied so that Re covered the range 3-1400. From the results 
of the measurements, curves of Nu = f(Re, Sc) were plotted (Fig. 3). The calibration curve 
i was obtained for glass spheres (d = 1.8 mm; m = 0.4); the results were in good agreement 
with those of similar investigations [4]. 

It is evident from Fig. 3 that decrease in active porosity by an order of magnitude 
leads to a sharp fall in the heat-transfer coefficient a. 

For mean values of the porosity (m ~ 0.5-0.2), ~ may be calculated from the formulas 

10.5 Pr~176 R e <  35, 

Nu = 9,2 Pr~ 35 ~< Re < 140, (11) 

, 10,2 Pr~176 R e >  140, 

which are given in [4] and recalculated:for Pr. : : 

For low porosity the experimental results are treated by the method of least squares, 
giving 

Nu = / 7,8Pr~'33Re~176 Re d 140, (12) 
[ 15.8 Pr ~176 .06, R e >  140. 

The data on the heat-transfer coefficient --Eq. (12) --may be used to determ~e the range 
of the Blot number: Bi = 0.5-200. 

The estimates of [5] show that in an underground collector of a circulation system, 
usually, Re > i00 and Bi > 50; therefore, Eq. (I0) may be significantly simplified by passing 
to the limit (B = O) Bi + ~, to give 

O(Fu, GX)=~ +- -  exp[--GX~t(u)l  sin u2Fu +GX~2(u) du (13) 
~ .  I 2 U '  

0 

950 



I=S ~ [ 

~S 

GX # 

O 
[ 1,5 z 3 

Fig. 4. 

4 # 8 /0 

I 

\ 
~ fO 3 0 4 0  

I __ 

t 
I 
I 

2 

6'0 80Fu 

Dimensionless temperature according to Eq. 
( 1 3 ) .  

where 
r (u) = uni/(2n2); % (u) = una/(2nz). 

Tabular values of the dimensionless temperature ~(Fu, GX) given by Eq. (13) are shown 
in Fig. 4. For a relatively crack-free medium the specific surface o(ma/m 3) is given by the 
formula [5] 

s = k ( 1 - - m ) / r o ,  (14) 

in which k = 3 if the skeleton consists of spherical structures (k = 2 for parallel cracks). 

For small Re, calculations should be based on the general formula (i0), finding Bi from 
Fig. 3. 

NOTATION 

m, porosity (fractions of unity); T, time; Wx, true velocity of liquid motion along x 
axis; ro, radius of spherical structures; r, radius; ai, %i, thermal resistivity and thermal 
conductivity of i-th material; a, heat-transfer coefficient; ~, kinematic viscosity; deq , 
equivalent particle diameter; Q, volume flow rate of liquid, m3/sec; S, bed cross-sectional 
area; o, specific surface of bed skeleton, i/m; k, form factor; ti, Gi, temperature and bulk 
heat capacity of i-th material; t~ n, temperature at collector inlet; s, p, parameters of La- 
place- Carson transform. Dimensionless parameters: liquid-phase temperature | = (t/ -- t~)/ 
(t~ n -- t~); temperature of bed skeleton T = (t b -- t~)/(t~ n -- t~); Fo = abT/r~ ; X = abX/wxr~; 
G = Gbor~/G/; R = r/ro; Pr = ~/al; Re = wxdeq/V; Bi ~= aro/Xb; Nu = adeq/X/; St, Schmidt num- 
ber. Indices: l, liquid; b, bed. 
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